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The unique solvability of two one-dimensional inverse problems on determining the coefficients of 
thermoelasticity equations is established; the solution algorithm for these problems is indicated and numerical 
calculations are given. 

In the present paper we consider two one-dimensional inverse problems concerning the definition of the 

coefficients of the highest derivatives for thermoelasticity equations. The unknown elasticity and thermal conductivity 

coefficients are functions of one variable. 
1. Let the thermoelasticity of a solid body be desci'ibed by the system of equations 

p (x) - ~ -  = x-h ~Ox x~E (x) "~x + (ST) +P~ (x, t), (1) 

c(x). ~ =x-~o--L-[x~(x) ~ ] or Ox ~ q- F, (x, t), (2) 

where x E (0, /), t > 0, Fi(x, t), i -- 1, 2, fl(x) > 0, p(x) > 0, c(x) > 0 are prescribed continuous functions of their 

arguments; k, l > 0 are prescribed positive numbers; E(x) and 2(x) are unknown positive continuous functions; u - 

u(x, t), T =- T(x,  t) are solutions of Eqs. (1), (2). At k = 0, k -- l ,  k -- 2 system (1), (2) describes the thermoelasticity 

process in a segment, a cylinder, and a sphere, respectively. 
For system (1), (2) we prescribe the initial and boundary conditions: 

�9 ou I = ~' (x), ul~=o = l, (t), ul~=~ = t~ (t), (3) ul,=0 = ~l(x) ,  -'~-'~=o 
Tl~_0 = 7"1 (t), T I ~  t = T2 (t), Tit=0 = To (x), (4) 

Ou 
[x~E(x)--~--x]x= ~ = g~ (t), (5) 

[x~Z (x) OT ] 
-~-x  J~=0 = e ,  (t), (6) 

where ~oi(x), fi(t), gi(t), Ti(t), i --- 1, 2, T0(x) are prescribed continuous functions of their arguments.  

The inverse problem on determining the coefficients for heat conduction equations and a wave equation 

separately in different formulations has been studied earlier (see [1-6] and others). In [7-9 ] special operating 

conditions are found when inverse thermoelasticity problems admit explicit solutions. For problem (1)-(6) these 

operating conditions are not satisfied; therefore, this calls for a separate consideration. 
First we prove that the solution for the inverse problem (1)-(6) is uniquely defined.Actually,  let us assume, 

on the contrary, that this problem has two solutions: the functions ui(x, t), Ti(x, t), Ei(x), ,li(x), i = 1, 2, are the 
solutions of problem (1)-(6). The discrepancy obtained below shows the validity of the statement about the unique 

solvalibity of problem (1)-(6). Now suppose u -- u2 - ul,  T = T2 - T1, E = E2 - El,  2 =22 - 21. It is easy to verify that 

the functions u ,  T, 2, E satisfy the system conditions 
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p (x) Ot 2 Ox 

o o [x~E (x) ou~ ] 
+ -&-x + x  Ox 

c (x) Ot Ox --g-f-x + x-k ...... xk~. (x) o x - b 7  3 ' 

u l , = o  = = u l~=o  = u lx= l  = 0 ,  
t=-0 

0/A2 ] 
[XhEl (X)-~X ]x=O -~" -- [ XkE (X) OX Jx=o 

(7) 

(8) 

(9) 

(10) 

(11) TI,=o = TI~,= o = TI~=l = O, 

OT OT~ ] 
[xh~'l(x)-'~'-x ]x=o = -- [ xh~'(x)'--~x Jx=o" (12) 

The inverse problem on determining the coefficient of the highest derivative 21 (x) in the heat conduction 

equation (2) has been investigated in [4, 51 and elsewhere. From the uniqueness theorem proved in these works it 

follows that in system (8), (11),  (12) T(x, t) -= 0 and2(x)  m 0. Then the second term in the r ight-hand side of Eq. 

(7) will be equal to zero. In this case the functions u(x, t), E (x) satisfy the equation 

[ ] [ O ( x ) ~  = x -~ 0 x~El(x ) Ou 0 Ou. ] 
Ox -~x + x-k x~E (x) Ox Ox ], 

and conditions (9), (10). In this equation instead of t we take ~, multiply by T/(2 ~vr-~-~)exp(-~z/4t), and integrate 

the obtained equation with respect to ~ in the domain (0, co). Then the function 

w (x, t) = 3,/'~ ! "~ exp -- u (x, ~) cl'~ (13) 

satisfies the system conditions 

Ow _ x- ~ . 0 xhE1 (x) Jr- xkE (X) , (14) 
p (x) Ot Ox Ox Ox j 

wlt=o = Wlx_=o = Wlx=t = 0, 05)  

[x hs (x) Ow , 
where w2 = w2(x, t) is the value of the integral in the right-hand side of (13) when we substitute u2(x, t) for u(x, 

t). Consequently, the functions E(x) and w(x, t) obey the conditions of a system of the type (8), (11), (12), which 

was satisfied by the functions T(x, t) and 2(x). Because of this, from the results of [4, 5] it follows that w(x, t) = 

E(x) = 0. If in system (7), (9), (10) we assume that E = T = 0, then we obtain u(x, t) - 0. 

Thus, ul - u2, T1 - T2, E1 - E2 ,  21 = 22 ,  i.e., thesolution of problem (1)-(6) is uniquely evaluated. We may 

easily check that  problem (1)-(6) is, generally speaking, unstable. Examples of instability for the inverse heat 

conduction problem are presented in [ 1, 5, 6 ]. These examples remain valid also for problem (1)-(6), since here the 

function instability through Eqs. (1) exerts an effect on the definitions as well. 

Remark. Under  the conditions of problem (1)-(6) l may be oo. Then, it is easy to see that  the statement on 
the unique solvability of the problem remains valid, because in this case all the stages of its proof are retained. 

2. In highly intensive processes of the thermal effect on materials the thermal  characteristics depend 

substantially on the temperature distribution [3 ]. Let us now prescribe the equation 

c(T) OT--ot =x-~ 0 [ O@x ]' x>O'  l>O'  (17) 
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instead of Eq. (2) in system (1)-(6), where C(T) > 0, 2(T) > 0 are continuous functions defined in (-0% ~o). 

Furthermore, assume that instead of (4), (6) we prescribe the conditions 

Tit=0 = 0, Tlx=o = TO, (18) 

Tit=,. = *0 (x) ( o r  TIx=xo = *0 (t)), (19) 

where xo > 0, to > 0, To > 0 are prescribed numbers; ~Po (x) (or ~/'0 (t)) is prescribed function having the inverse F (~/0). 

Consider the inverse problem on determination of the functions u(x, t), T(x, t), E(x) > 0, ~I(T) > 0 from 

conditions (1)-(3), (5), (17)-(19). Here the unknown coefficients are also sought in the class of positive continuous 

functions; u (x, t), T (x, t) are the classical solutions for the corresponding boundary-value problems. Equation (17) 

admits a self-similar solution [6 ] under conditions (18), (l 9). As was shown in [4 ], if the function 10 (x) is prescribed, 

then we may define ~Po(t) by it and vice versa. Therefore, for the sake of definiteness suppose that the function Y'o(x) 

is prescribed. 
In [4 ], with definite assumptions for the coefficient 2 (T) and the function T (x, t) from the system of equations 

(17)-(19) the expressions 
r I 

~, (T) = Fr  (T) F -k (T) i~ [ ~ c (s) F (s) F h (s) ds, (20) 

are found. The right side of (20) is taken to be a positive continuous function. 
If we substitute the function T(x, t) from (21) into the right-hand side of (1), then we obtain the inverse 

problem (1), (3), (5) for defining the functions E(x), u(x, t). The unique solvability of this problem was discussed 

above in Sec. 1. Consequently, the solution of the inverse problem (1), (3), (5), (7), (19) is unique determined and 

the explicit conversion formulas (20), (2i) are correct for2(T), T(x, t). 
3. We shall now consider an example of an inverse problem of the type (1)- (6), where the constant coefficients 

2, E are sought: 
O~u O~u OT 
cgt 2 Ox ~ Ox 

OT d2T 
9c , = ~ , ~ ,  xERt, t > O ,  

at Ox ~ 

UII=O ~ UO, ~ /21, 
/=0  

T[,=0 = Q6 (x), 

E au[  
T x  i ,=b = __ g~, It:O 

OT f 
ax x=_~ ~ g~. ~.=t t 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

Equation (23) admits an explicit solution in the form of [10 ] under condition (25): 

Substituting (28) into (27), we obtain an algebraic equation for the definition of the thermal conductivity coefficient: 

ze-Z~= ~, (29) 

here the following dimensionless quantities are introduced: 
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TABLE 1. Roots of Eq. (29) for Different Values of tc 

tc z l  z 2 A z  = z 2 - z 1 

0.250 

0.282 

0.400 

0.420 

0.425 

0.428 

0.42888 

0.26872 

0.31055 

0.52938 

0.60741 

0.64078 

0.67527 

0.70711 

1.27705 

1.12510 

0.90135 

0.81175 

0.77558 

0.73942 

0.70711 

1.00833 

0.81455 

0.37197 

0.20434 

0.13480 

0.06415 

0 

a , /  pc 292[1 
z = - T  V Lta ' ~=  ' Qpc 

2 
It is easy to verify that the maximum value of the function f(z) = ze -z  is at tained at z = 1 / v ~  and 

(30) 

max ] (z) = ] - V ~  

This means that  Eq. (29) has a solution only when 0 < x ___ 1/9-2-~. However, when 0 < x < 1/4-2--e this equation has 

two solutions. This  s tatement indicates the nonunique determination of the thermal conductivity coefficient in the 

case when the value of x, calculated by formula (30), lies in the interval (0, 1/V~ 

Table  1 shows roots of Eq. (29) obtained for different values of x. It can be seen from Table  1 that with 

increasing x from zero to 1 / r  these roots approach each other and the difference between them approaches zero. 

When x = 1/v2--e -- 0.42888 the roots coincide, i.e., when x = 1/~r2-~ Eq. (29) has a unique solution, namely; z0 = 
1/v"2- = 0.70711. 

Hence,  the thermal  conductivity coefficient 2 is uniquely determined only in the case when 

2g~tl ~ 1 
' = ~ (30a) 

Here,  according to (30), we obtain 

~o = a~P c 
2tl (30b) 

The  elimination o f p c / t l  from expressions (30a), (30b) yields 

7~o = g~a~ l /  2ne 
Q 

Substituting the value found for the thermal conductivity coefficient into (28), we determine the function T (x, 
t) in terms of the initial data: 

T (x' t )= Q ~ a t  ( X2tl -a--- exp 2a2t (31) 

If we substitute (31) into (22), then we obtain the equation 

3 ( 
1 65. a , .  '" ' /  oxp 

o2 'Or '2 = ' d x  ~ -t- Ea 3 F 
xZtl ) 
2a~t , (32) 

where v = V-E-Fp is the propagation velocity of expansion waves in an elastic medium. 
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TABLE 2. Roots of Eq. (37) for Different Values of q 

q 0 1 2 5 10 102 103 104 

~0 0 1.07294 1.24940 1.76450 2.21328 3.93005 5.83674 7.84377 

TABLE 3. Numerical Magnitudes of the Elasticity Modulus for Different Values of q 

q 0 0.2 0.5 I 2 5 I0 10 2 

E1 0 12.8 4.74 1.1512 1.56 3.1135 ~" 4.8986 15.445 

By applying the Laplace transform to (32) with allowance for condition (24), we write 

dZu p2 _ pt/o @ Ul ~Q[1- V~I (__ ..X ~/2~I) 
dx 2 v--- 7- u = - v2 + E ~  eXP a.  " 

(33) 

The solution, bounded at infinity, for Eq. (33) will be 

u(x, p ) =  PUOp~ -k exp --  

a2Ep l a~ 

Passing to the original in (34), we obtain 

(x, t) uo + ult + - 2 U  2~*' u - ~ -  exp k - -g / -  ] • 

• [exp(  2vxh ~ . *  ( +  V / - ~ +  v 1 /2-~ '~)+exp(  2vxq x \ 7 /  - U  aS , 

x * * . ( ~ - " i s  

Here 

0)* (=) = 1 �9 2 ~ e_U,dy" :V-~-~ 

(34) 

(35) 

Hence we shall have 

E Ou [ Q~vta sh 2vbtl (36) 
-[t=O ~--- a2 a2 Ox x=b 

The algebraic equation for determining v is obtained from (26) and (36): 

q 
s h ~ = '  �9 

(37) 

In this case the following dimensionless quantities are introduced: 

2vbh 2bgl (38) ~ = ~ ,  q=- 
a~ ~Q 

Equation (37) at any prescribed value of q has a unique solution. The corresponding solutions of Eq. (37) for 

various values of q are given in Table 2. 
By the solution ~0 of Eq. (37) found, the propagation velocity of the elastic expansion wave v is determined 

from the formula 
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a2~o (39) 

2btl 
Table 3 presents the dependence of E1 = 4b2t12E/pa 4 on q with account of Table 2. Hence we determine the elasticity 

modulus: 

E = p a~'~J~ (40) 
4b~t~  �9 

Substituting (39) and (40) into (35), we define the bias field via the initial data 

u(x, f.)= Uo + Ult + a~p~ ~ e x P \ 2 - ~  x 

- 7 -  ox ,,, o0o  41, 

Thus, we have found explicit expressions for the unknown coefficients 2 and E. By these quantities the 
expressions for the functions T (x, t) and u(x, t) are determined. If instead of the additional conditions (25), (27) we 
take the conditions 

u[~--ob = fl, TI~_ ~ ----- t2, (42) 

where fl and f2 are prescribed numbers, then, using them similarly to the above, we can solve the inverse problem 
on the definition of 2, E, u(x, t), T(x, t). Furthermore, if the coefficients Q, fl, c, p are unknown, then, taking 
additionally conditions of the type (25), (27), (42), it is also possible to determine them. In the special case when 2 

and E are prescribed, some of the unknown coefficients may be defined from the expressions found above for and 
E. 
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